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Stability conditions for the vertical position of a heavy symmetrical 
gyroscope (Lagrange’s case) were derived by Chetaev 111, who used the 
second method of Liapunov without any simplifying assumptions (as it 
is used for example in the small vibrations method), and also by 
Rumiantsev [ 2 I, who found stability conditions for Kovalevska’s case. 
This note supplements the above-mentioned results. presenting the 
derivation of stability conditions for the vertical position of a 
heavy symmetrical gyroscope on gimbals [in a Cardan mounting 1. The 
solution of this problem can be regarded as a generalization of the 
Lagrange case, and it shows the existence of certain new effects 
noticed previously by Nikolai [ 3 1, when he investigated a special 
case of a rapidly rotating astatic gyroscope. 

1. Statement of the probh. Assume that the gyroscope is suspended 
on gimbals (see Fig. 1) in such a way that the outer axis of the gimbal 
system is vertical, i.e. it coincides with the direction of the gravita- 
tional force. ‘lhe friction in the gimbal bearings is neglected. ‘Ihe 
system consists of a rotor, and the outer and inner gimbal rings, and it 
has three degrees of freedom. Its position can be uniquely determined by 
three coordinates. We shall use Euler’s coordinate system consisting of 
the angles q5, li/ and 8, the initial position being when the planes of both 
rings coincide. We assume, as in the Lagrange case, that the center of 
gravity of both the rotor and the inner gimbal ring is on the axis of the 
rotor at a distance s from the stationary point of the suspension. We 
shall regard s as positive if in the zero position of the system the 
center of gravity is above the stationary point. The position of the 
center of gravity of the outer gimbal ring does not require any special 
assumptions. In the zero position t) = 8 = 0 and the moments of inertia 
about the axes n, y, z, as shown in Fie;.l, are the principal moments of 
inertia and are denoted as follows: 
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A,, B, = A,, C, for the rotor 

A,’ % c;! for the inner gimbal ring 

_ _ 
5 for the outer gimbal ring 

2. 'ihe initial integrals. Lagrange’s problem of the motion 
symnetrical gyroscope can be solved by quadratures because it 
to find the first three integrals of the equations of motion. 
integrals have a physical meaning. ‘Ihey express: 

(1) ‘Ihat the vertical c~ponent of the angular ants is 

of a heavy 
is possible 
These 

constant 

(2) That the component of the angular momentum in the direction of 
the gyroscope’s axis is constant 

(3) That the total energy of the whole system is constant. 

These three integrals could also be found in the case of a heavy sym- 
metrical gyroscope on gimbals. 

‘lhe system is conservative because the moments arising from friction 
in the bearings of the gimbal system are neglected. 

Fig. 1. 
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It can be shown easily that for a gyroscope on gimbals the vertical 
component of the angular momentum must also be constant. lhe time deri- 
vative of the vector of angular momentum equals the sum of the vectors 
of the moments of outside forces. The moment of the gravitational forces 
and the moment transmitted by the outer axis of the gimbals are acting 
on the system. Vectors of these moments must lie in a horizontal plane; 
therefore the tip of the vector of angular momentum can move only in a 
horizontal plane, and hence the vertical component of the total angular 
ants must be a constant. 

‘lhe third integral shows that the component of the rotor’s angular 
momentum along its axis is constant (the total angular momentum not being 
constant ). ‘lhe vector of the moment of gravity forces about the rotor’s 
axis is directed along the inner axis of the gimbal system (the so- 
called nodal line), and the vector of the moment transmitted from the 
rotor to the inner gimbal ring is perpendicular to the rotor’s axis be- 
cause of the absence of frictional forces. In the coordinate system 
attached to the rotor the relationship between the angular momentum and 
outside moments is as follows: 

- 
(D1 is the vector of the rotor’s angular ~~nt~and G1 is the vector 
of the rotor’s angular velocity). Qn account of the symmetry of the 
rotor, the component of the Coriolis term [G~D~I along the retorts axis 
vanishes as well as both moments. lhe tip of the vector of the angular 
momentum D, moves in a plane normal to the rotor’s axis; hence its com- 
ponent along the rotor’s axis must be constant. 

In our case the three integrals are as follows 

+ +j,cosa=ro WI 

+ [(A, + I), + C,) - (A, f B2 - C,) cos2 S] + c,r, cos 9 = D, (24 

Gz (A, + -42) + ~$q(A, +Ba + C,) - (A, + I32 - C,) cosaq + 

$ C,ro2 + 2 nzgs cos 4- = B (2.3) 

where r. is the component of the rotor’s angluar velocity along its axis, 
Dz is the vertical component of the total angular momentum and E is the 
double sum of kinetic and potential energies. ‘Ihe three integrals (2.1), 
(2.2), (2.3) reduce to the integrals of the Lagrange case when the 
masses of the gimbal rings vanish (A, = B2 = C2 = C7 = 0). It can be 
shown that the problem of motion of a gyroscope on gimbals leads to 
quadratures as in the Lagrange case which we shall not present. Ilere we 
are interested only in the stability problem. 
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Lt us introduce a new variable 

u=cosa 

and also the following substitutions: 

G&l 

A,fA, = k 1’ 
2mgs k 

Al+& = 3’ 
Al+H2+C8=k 

h-t442 
b 

'Ihen the original integrals reduce to: 

$+&4=ro 

4 (A6 --&u~) a_ k,u = k, 

G2 + p(k5 - k,u2) + k3u F=: k, 

(2.6) 

(2.7) 

(2.8) 

We are interested in the stability of the system when the rotor's axis 

is vertical, a case represented by the conditions 

8 = 0 (u, = 1). 9=0, &=C& (i)= $,, (2.9, 

The above conditions define in equations (2.h), (2.7), (2.8) the con- 

stants ro, k, and k, which depend on initial conditions. like constant k, 
also depends on initial conditions but it is already defined through rO. 

In order to investigate stability we must rewrite the integrals (2.h), 

(2.7) and (2.8) and introduce in them perturbations in the form of varia- 

tions xi in the variables 

~-;O$-Xl, +=-C&+.X.,, &&+X3, u= l--Z* (2.10) 

'lhe initial conditions of a perturbed motion are changes; hence the 

constants may also 

6 = ran + I(, 

For a perturbed 

assume different values: 

k, - k,,, + K,, k2 = kzO + Ii’,, k, = k,,, + K, 

motion we obtain the following integrals: 

52 + x3- jJoX1-X3Jp = H (2.11) 

- x~x,%~ + x,x,2k,- x,2$ok, + x3 (kg - k,) + 

+ x4 (2&k, - k, j = K, - K, (2.12) 

.z12 - x3zx442kk.B + @x42k, - xs”4”2$ok, + x33 (k, - k,) + x3x&k, - 

- Q&h_, +x,2& (k5 -. k,) + x., (2qio2k, - k3) - Ii4 (2.13) 
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3. Cimstmwtim of the Liapnw fmetion. We shall seek the Liapunov 

fnnction V of the variables xi in the form of a linear combination of the 

first integrals in (2.11), (2.121, (2.13) respectively. It is convenient 

to introduce a new variable x5, defined as follows: 

x,s = 224 - xas = 1 - us > 0 (3.1) 

By introducing a new constant KO, we can rewrite (3.1) as follows: 

x,s + xbs - 2x4 = K, = 0 (3.2) 

We can now construct the Liapunov function V in the form 

V = KP + a1 (K2 - gl) + a2K3 + a3fi2 (3.3) 

Ihe constants al, a*, a can be regarded for the time being as arbitrary. 

The time derivative of !’ vanishes identically because every term of (3.4) 

is a constant. By Liapunov’s theorem, the conditions for which V is 

positive definite, determine the sufficient conditions for the stability 

of the investigated system. 

Substituting (2.111, (2.12), (2.13) and (3.2) in (3.3) we obtain 

V = xla + x22a3 + xs2 (a3 + k, - kd + aa (a2 + a&?> + 
+ z2 (h2k, i- al&& + ad + x2G% - xsG%a3 - 

- wG&& + $8 (2% + ad (4 - kd - x4 6, + aA + 24 + 

+ x3xd22J;rba3 - $x4 2~ + x3q2 (2#,& + a&,) - 
- x2x3x42a3 + x32x42a3 + x32xb2k,, (3.4) 

‘Ihe linear terms of this expression vanish when 

(3.5) 

In such a case the Liapunov function (3.4) becomes 

v = zla + (~2 + ~3)~ a3 + xs2 (k, - &) +za2 (riOkl - f kg + a&,2> + 

+ G’ ($A-- % ks - $o2k, - (zs + 5) &+&as+ 

+ [z3z422$0a3 - ss2za2a, - zzz,sc,2as + ss2za2as + z,2z,ak,] (3.6) 

Ihe Liapunov function V consists then of a quadratic form of the 

variables xi plus the third- and the fourth-order terms. 

lhe quadratic form is positive definite if the following inequalities 
are satisfied: 

a,>% A,--&>O, &A - + k, > 0, &,kl - -?2_ kg - $,2k, > 0 (3.7) 
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When the above conditions are satisfied, the multipliers of the pure 

quadratic terms are positive and in addition the Sylvester’s inequality 

for the quadratic form of the variables x2 + x3 and xU is satisfied: 

‘Ihe first condition (3.7) could be always satisfied by choosing a 

suitable value for the constant a . the second condition (3.7) is auto- 

matically satisfied because of (Z!~I), as k, > 0; the third condition (3.7) 

is obviously satisfied if the fourth condition (3.7) is satisfied. Thus, 

the conditions (3.7) turn out to be sufficient fo? the stability of a 

gyroscope with respect to the variables 6, 6, $, +. 

4. hditions of stability. ‘Ihe inequality (3.8) can be considered as 

the relation determining the admissible values of the quantity ticlo. 

Boundaries of the admissible region are as follows: 

(4.1) 

or, using the original symbols 

‘Ihe solutions are real when 

C12r02 > 4mgs (4 + B2 - C2) (4.3) 

and the real solutions correspond to a real physical motion. 

When B, = Cz = I), then the expression (4.3) reduces to the known ex- 

pression representing the necessary and sufficient conditions for 

stability in the Lagrange case, For a gyroscope on gimbals this condition 

is necessary but not sufficient. In order to have stability, one more 

condition must be satisfied, namely 

(4.4) 

When the rotor is in vertical position, 

gimbal system turns out to be the deciding 

the rotational velocity of the 

factor, in the problem of 

stability of a gyroscope on gimbals. ‘Ihis result is physically plausible 

if we take into account that in the Lagrange case the quantities I/J and 1/1 

are undefined when the rotor is in vertical position, and the nodal line 

and its azimuthal rotational velocity are only fixed parameters, whereas 

for a gyroscope on gimbals the angle t,b becomes an important variable be- 
cause it defines the motion of the gimbal system. 
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Assuming, without any loss of generality, that rO > 0, we obtain for a 
“standing gyroscopen fs > 0) 

It is seen that a standing gyroscope on gimbals may lose stability 
without an initial push on the gimbal ring in the direction of rotor’s 
spin. For a whanging gyroscope” (s < 0) we have: 

In the last case with &G = 0 the motion is stable. In the Lagrange 
case the hanging gyroscope is always stable, but a hanging gyroscope on 
gimbals could lose stability when it receives a push greater than $G2 in 
the direction opposite to its spin, or a push greater than &,, in the 
direction of its spin. ‘lhe proof of instability in these two cases will 
not be here presented, 

?he influence of the quantity (Jo l on the stability could be easily 
demonstrated on appropriate models. One more remark should be added; 
namely, that the limiting values (4.2) for the azim&hal velocities 
correspond to velocities of “regular precession* of a heavy gyroscope on 
gimbals as 8 + 0. 
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